Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
biorxiv; 2022.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2022.07.14.500042

Résumé

The SARS-CoV-2 Omicron BA.1 variant, which exhibits high level neutralization resistance, has since evolved into several sub-lineages including BA.4 and BA.5, which have dominated the fifth wave of infection in South Africa. Here we assessed the sensitivity of BA.4 to neutralization and antibody dependent cellular cytotoxicity (ADCC) in convalescent donors infected with four previous variants of SARS-CoV-2, as well as in post-vaccination breakthrough infections (BTIs) caused by Delta or BA.1. We confirm that BA.4 shows high level resistance to neutralization, regardless of the infecting variant. However, breakthrough infections, which trigger potent neutralization, retained activity against BA.4, albeit at reduced titers. Fold reduction of neutralization in BTIs was lower than that seen in unvaccinated convalescent donors, suggesting maturation of neutralizing responses to become more resilient against VOCs in hybrid immunity. BA.4 sensitivity to ADCC was reduced but remained detectable in both convalescent donors and in BTIs. Overall, the high neutralization resistance of BA.4, even to antibodies from BA.1 infections, provides an immunological mechanism for the rapid spread of BA.4 immediately after a BA.1-dominated wave. Furthermore, although ADCC activity against BA.4 was reduced, residual activity may nonetheless contribute to the protection from disease.


Sujets)
Douleur paroxystique , Effets secondaires indésirables des médicaments
2.
researchsquare; 2022.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1170883.v1

Résumé

Neutralizing antibodies strongly correlate with protection for COVID-19 vaccines, but the corresponding memory B cells that form to protect against future infection are relatively understudied. Here we examine the effect of prior SARS-CoV-2 infection on the magnitude and phenotype of the B cell response to single dose Johnson and Johnson (Ad26.COV2.S) vaccination in South African health care workers. SARS-CoV-2 specific memory responses expand in response to Ad26.COV2.S and are maintained for the study duration (84 days) in all individuals. However, prior infection is associated with a greater frequency of these cells, a more prominent germinal center (GC) response, and increased class switched memory (CSM). These B cell features correlated with both neutralization and antibody-dependent cytotoxicity (ADCC) activity, and with the frequency of SARS-CoV-2 specific circulating T follicular helper cells (cTfh). In addition, the SARS-CoV-2 specific CD8+ T cell response correlated with increased memory B cell lung-homing, which was sustained in the infected group. Finally, although vaccination achieved equivalent B cell activation regardless of infection history, it was negatively impacted by age. These data show that phenotyping the B cell response to vaccination can provide mechanistic insight into the impact of prior infection on GC homing, CSM, cTfh, and neutralization activity. These data can provide early signals and mechanistic understanding to inform studies of vaccine boosting, durability, and co-morbidities.


Sujets)
COVID-19
3.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.06.03.21258307

Résumé

SARS-CoV-2 variants have emerged that escape neutralization and potentially impact vaccine efficacy. T cell responses play a role in protection from reinfection and severe disease, but the potential for spike mutations to affect T cell immunity is poorly studied. We assessed both neutralizing antibody and T cell responses in 44 South African COVID-19 patients infected either with B.1.351, now dominant in South Africa, or infected prior to its emergence (first wave), to provide an overall measure of immune evasion. We show for the first time that robust spike-specific CD4 and CD8 T cell responses were detectable in B.1.351-infected patients, similar to first wave patients. Using peptides spanning only the B.1.351 mutated regions, we identified CD4 T cell responses targeting the wild type peptides in 12/22 (54.5%) first wave patients, all of whom failed to recognize corresponding B.1.351-mutated peptides (p=0.0005). However, responses to the mutated regions formed only a small proportion (15.7%) of the overall CD4 response, and few patients (3/44) mounted CD8 responses that targeted the mutated regions. First wave patients showed a 12.7 fold reduction in plasma neutralization of B.1.351. This study shows that despite loss of recognition of immunodominant CD4 epitope(s), overall CD4 and CD8 T cell responses to B.1.351 are preserved. These observations may explain why, despite substantial loss of neutralizing antibody activity against B.1.351, several vaccines have retained the ability to protect against severe COVID-19 disease.


Sujets)
COVID-19
4.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.03.06.434193

Résumé

Neutralization escape by SARS-CoV-2 variants, as has been observed in the 501Y.V2 (B.1.351) variant, has impacted the efficacy of first generation COVID-19 vaccines. Here, the antibody response to the 501Y.V2 variant was examined in a cohort of patients hospitalized with COVID-19 in early 2021 - when over 90% of infections in South Africa were attributed to 501Y.V2. Robust binding and neutralizing antibody titers to the 501Y.V2 variant were detected and these binding antibodies showed high levels of cross-reactivity for the original variant, from the first wave. In contrast to an earlier study where sera from individuals infected with the original variant showed dramatically reduced potency against 501Y.V2, sera from 501Y.V2-infected patients maintained good cross-reactivity against viruses from the first wave. Furthermore, sera from 501Y.V2-infected patients also neutralized the 501Y.V3 (P.1) variant first described in Brazil, and now circulating globally. Collectively these data suggest that the antibody response in patients infected with 501Y.V2 has a broad specificity and that vaccines designed with the 501Y.V2 sequence may elicit more cross-reactive responses.


Sujets)
COVID-19 , Syndrome des cassures de Nijmegen
SÉLECTION CITATIONS
Détails de la recherche